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ABSTRACT

Regional hydroclimate changes on decadal time scales contain substantial natural variability. This

presents a challenge for the detection of anthropogenically forced hydroclimate changes on these spatio-

temporal scales because the signal of anthropogenic changes is modest, compared to the noise of natural

variability. However, previous studies have shown that this signal-to-noise ratio can be greatly improved in a

large model ensemble where each member contains the same signal but different noise. Here, using multiple

state-of-the-art large ensembles from two climate models, the authors quantitatively assess the detectability

of anthropogenically caused decadal shifts in precipitation-minus-evaporation (PmE) mean state against

natural variability, focusing on North America during 2000–50. Anthropogenic forcing is projected to cause

detectable (signal larger than noise) shifts in PmE mean state relative to the 1950–99 climatology over 50%–

70%ofNorthAmerica by 2050. The earliest detectable signals include, duringNovember–April, amoistening

over northeastern North America and a drying over southwestern North America and, during May–

October, a drying over central North America. Different processes are responsible for these signals. Changes

in submonthly transient eddy moisture fluxes account for the northeastern moistening and central drying,

while monthly atmospheric circulation changes explain the southwestern drying. These model findings sug-

gest that despite the dominant role of natural internal variability on decadal time scales, anthropogenic shifts

in PmE mean state can be detected over most of North America before the middle of the current century.

1. Introduction

The trajectory of Earth’s climate system is determined

by anthropogenic forcing and natural climate variability.

Anthropogenic forcing comes from human activities,

such as emissions of greenhouse gases and aerosols and

changes in land use; natural climate variability consists

of both forced variability by natural processes, such as

volcanic eruptions and solar variations, and unforced

variability arising from processes internal to land, ocean,

atmosphere, and cryosphere, as well as their interactions.

The unforced natural variability is often referred to as

internal climate variability. The relative role of these

factors in the climate system varies with time and spatial

scales. In general, anthropogenic and natural forcing

plays a larger role in the global-scale climate change

over periods longer than several decades, while internal

climate variability can be more important within a few

decades at local to continental scales [e.g., the Fifth

Assessment Report (IPCC 2013); Hoerling et al. 2011;

Xie et al. 2015; Sarojini et al. 2016].

The important role of internal climate variability on

relatively small spatiotemporal scales has recently been

highlighted in a number of studies. For example, Deser

et al. (2012, 2014) analyzed North American climate

projections over 2010–60 in two large ensembles of cli-

mate change simulations conducted with two climate

models: the National Center for Atmospheric Research

CCSM3 (40 simulations) and the Max Planck Institute

ECHAM5 coupled model (17 simulations), respectively.

Simulations within each ensemble are subject to the same

external forcing but start from different conditions, thus
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producing equally possible climate trajectories that con-

sist of the same externally forced signal and different

internally generated climate variability. Deser et al.

(2012, 2014) found that both models project a substantial

spread among ensemble members—caused solely by in-

ternal climate variability—in the 50-yr linear trends of

surface temperature and precipitation, with trends of

opposite signs for both fields appearing over many parts

of North America. In particular, they showed that the

spread in precipitation trends is larger than the forced

signal, suggesting a dominant role of internal climate

variability over anthropogenic forcing for precipitation.

They further attributed the spread among ensemble

members primarily to the low-frequency variations of

large-scale atmosphere circulation. These studies, along

with others (e.g., Wallace et al. 2015; Xie et al. 2015;

Sarojini et al. 2016; Zhang et al. 2016), highlight the

dominant role of internal climate variability in re-

gional hydroclimate changes on decadal–multidecadal

time scales.

The dominant role of internal climate variability in re-

gional hydroclimate changes on decadal–multidecadal

time scales suggests a challenge in detecting the associ-

ated anthropogenically forced component against the in-

ternal component. This is because internal climate

variability is inherently unpredictable beyond a decade

(e.g., Smith et al. 2007; Branstator et al. 2012; Yang et al.

2013). Previous studies (e.g., Deser et al. 2012, 2014) have

implied that this challenge can be solvedwith largemodel

ensembles. In this work, we use state-of-the-art large

model ensembles to quantify the detectability of decadal

hydroclimate changes caused by anthropogenic forcing in

near-term projections over North America. We choose

North America because the dominant role of internal

climate variability in hydroclimate has been demonstrated

there (Deser et al. 2012, 2014; Wallace et al. 2015). Many

other studies have examined future projections of hy-

droclimate changes over North America based on simu-

lations archived in phases 3 and 5 of the Coupled Model

Intercomparison Project (CMIP) (e.g., Seager et al. 2007;

Neelin et al. 2013; Maloney et al. 2014; Seager et al. 2014)

and medium-sized single model ensembles (e.g., Lin et al.

2016; Sanderson et al. 2015; Lehner et al. 2017). These

previous studies have focused on the future state of North

American hydroclimate in response to projected anthro-

pogenic forcing and the physical mechanisms underlying

the anthropogenic changes. Here, we focus on the de-

tectability of decadal-scale, anthropogenically forced hy-

droclimate changes against natural internal climate

variability over North America in near-term projections.

This study is enabled by three state-of-the-art large

ensembles of climate change experiments and three

multimillennia preindustrial control experiments

conducted with two global climate models. The spa-

tial resolution of the models (about 0.58 and 18; see
more details below) allows the analysis to be con-

ducted on regional scales (over North America). The

large model ensemble has a special advantage in ex-

tracting the forced response by averaging across en-

semble members that contain the same signal (forced

response) but different noise (internal climate vari-

ability) and, thus, can facilitate the assessment of an-

thropogenic hydroclimate changes, especially on

decadal time scales (dominated by internal climate

variability). Here, we focus on the anthropogenic

change in mean state (as opposed to the change in in-

ternal variability), which is the most predictable com-

ponent in climate change (Kirtman et al. 2013). In

particular, we examine the decadal evolution of pro-

jected changes in precipitation-minus-evaporation

(PmE) mean state and assess when the changes be-

come detectable and attributable to anthropogenic

forcing against internal climate variability. Here, we

characterize a change as ‘‘detectable’’ when the en-

semble mean projected change in PmE between two

time periods, such as the difference between the 2020–

29 period and the 1950–99 period, lies outside the

range of model simulated ensemble mean changes that

arise solely from internal climate variability (as de-

duced from a corresponding control simulation). This

study, focusing on North America, serves as an exam-

ple to quantitatively illustrate that anthropogenically

forced changes in hydroclimate mean state on regional

and decadal scales are readily detectable. Our results

are of relevance for local management of water re-

sources, policy planning, and efforts in climate miti-

gation and adaptation over North America.

2. Models and experiments

The three large ensembles analyzed here are con-

ducted with two state-of-the-art global coupled climate

models: the Forecast-Oriented Low Ocean Resolution

(FLOR) flux-adjusted model (Vecchi et al. 2014), de-

veloped at the Geophysical Fluid Dynamics Laboratory

(GFDL), and the Community Earth System Model,

version 1.0 (CESM1) (Hurrell et al. 2013), developed

at the National Center for Atmospheric Research

(NCAR) (see Table 1 for a summary). The GFDL

FLORhas a high horizontal resolution of approximately

50 km for the atmosphere and land components and a

relatively low horizontal resolution of 18 (telescoping to
0.3338 near the equator) for the ocean and sea ice

components, while the NCAR CESM1 has a nominal

horizontal resolution of 18 for all model components

(atmosphere, ocean, land, and sea ice). Note that the
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CCSM3 used byDeser et al. (2012, 2014) (at a horizontal

resolution of approximately 2.88) was the predecessor of
the more advanced, higher-resolution CESM1.

Two of the three large ensembles are performed with

FLOR. The first ensemble has 35 members, driven by

identical observed estimates of both anthropogenic

and natural forcing before 2005 and representative

concentration pathway 4.5 (RCP4.5) emission sce-

nario (Meinshausen et al. 2011) thereafter (termed

ALLFORC), and the second ensemble has 30 members,

driven by identical observed estimates of natural-only

(volcanic and solar) forcing before 2005 and solar-only

(no volcanic) forcing (quasi-11-yr cycle) thereafter

(anthropogenic forcing fixed at the 1941 level) (termed

NATURAL). Both ensembles simulate the period from

1941 to 2050, except for five ALLFORC members cov-

ering 1861–2100. Members within each ensemble start

from different conditions that are briefly described as

follows (refer to Zhang et al. 2016 for more details). The

five long members start from different years of a 3500-yr

preindustrial control simulation (years 101, 141, 181,

221, and 261); the remaining 30 ALLFORC members

and the 30 NATURAL members share the same initial

conditions that are created by shuffling the 1940 and 1942

atmosphere–land states and 1941 ocean–sea ice states of

the five long members. The first (second, third) 10

members start from the 1941 ocean–sea ice state of the

first (second, third) long member, combined with the

1940 or 1942 atmosphere–land states of the five long

members. We allow the model to adjust to the new initial

conditions for the period 1941–50 and only analyzemodel

output after 1950. The version of the FLOR model used

here employs flux adjustments (FA), a technique for re-

ducing mean biases in climate models. Companion ver-

sions of FLOR that do not use flux adjustments produce

similar changes in hydroclimate mean state in response to

anthropogenic forcing (Delworth et al. 2015).

The CESM large ensemble analyzed here has 35

members (Kay et al. 2015). It simulates the period of

1921–2100, except for one member starting in 1850. All

members are subject to identical observed estimates of

historical (anthropogenic and natural) forcing before

2005 and RCP8.5 emission scenario (Meinshausen et al.

2011) thereafter, but they differ in their initial conditions

(also termed ALLFORC; note its stronger RCP radia-

tive forcing than FLORALLFORC). The long member

(1850–2100) is initialized from year 402 of a 2300-yr

preindustrial control simulation, while the remaining

members branch off from the long member in year 1921,

with round-off level differences added only to the air

temperature field. Consistent with the FLOR ensem-

bles, we only analyze model output after 1950.

Besides the three large ensembles of the climate

change experiment, three preindustrial control simula-

tions are also analyzed. These simulations include the

aforementioned 3500-yr FLOR and 2300-yr CESM1

fully coupled control runs and a 2600-yr CESM1 control

run only using its active atmosphere–land components

driven by fixed boundary conditions (monthly mean sea

surface temperature and sea ice averaged over years

402–1510 of the fully coupled control run). These long

control simulations will be used to estimate low-

frequency (decadal and longer) internal climate vari-

ability arising from the fully coupled system and the

atmosphere–land intrinsic dynamics. This large volume

of climate change and control simulations from the two

climate models (a total of about 20 000 model years)

provides a unique opportunity to robustly assess both

forced climate change and internal climate variability,

enabling us to investigate the detectability of decadal

TABLE 1. Summary of model simulations used in this study.

Expt Description Simulation No. of model years analyzed

GFDL FLOR

;0.58 atmosphere and ;18 ocean
Fully coupled control Preindustrial forcing 3500 yr 3400 (101–3500)

30-member NATURAL Natural historical forcing

(solar variations and volcanos)

before 2005; solar variability

only (quasi-11-yr cycle)

afterward.

1941–2050 3030 (1950–2050)

35-member ALLFORC All historical forcing before 2005;

RCP4.5 afterward.

5 members: 1861–2100 3535 (1950–2050)

30 members: 1941–2050

NCAR CESM1

;18 atmosphere and ocean

Fully coupled control Preindustrial forcing 2200 yr 1801 (400–2200)

Atmosphere–land control Preindustrial forcing 2600 yr 2600

35-member ALLFORC All historical forcing before 2005;

RCP8.5 afterward.

1 member: 1850–2100 5285 (1950–2100)

34 members: 1920–2100
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shifts in regional hydroclimate mean state caused by

anthropogenic forcing in near-term projections. Here,

we focus on the decadal evolution of PmE mean state

over North America from 2000 to 2050.

The detectability analysis can be impacted by model

biases and deficiencies. To evaluate the performance of

the two climate models in simulating the hydroclimate

over North America, we first compare the simulated

climatological annual mean precipitation1 during 1950–

99 with observations (note that the lack of evaporation

observations precludes a comprehensive evaluation of

the model performance in hydroclimate). Two obser-

vational products are used: the Climatic Research Unit

(CRU) at the University of East Anglia, version 3.24.01

(Harris et al. 2014), and the Global Precipitation Cli-

matology Centre (GPCC) dataset, version 7 (Schneider

et al. 2011),2 both at 0.58 resolution. These two

observations exhibit consistent precipitation climatol-

ogy over North America in terms of both spatial pattern

and amplitude (except for Alaska andGreenland, where

GPCC and CRU data show more precipitation, re-

spectively; see Fig. 1). Both models capture the large-

scale pattern of observed annual mean precipitation

climatology, including enhanced precipitation along the

northwestern Pacific coast, relatively strong pre-

cipitation over eastern North America, and weak pre-

cipitation over high latitudes and the 1208–1008W band.

The higher-resolution FLOR, with the use of flux ad-

justments, simulates the east–west precipitation gradi-

ent much better than CESM1, but both models slightly

overestimate the total precipitation over western North

America and underestimate the precipitation over the

southeastern United States. Overall, both models

simulate a reasonable precipitation climatology dur-

ing 1950–99 over North America [especially compared

to their lower-resolution precedents, e.g., GFDL

CM2.1 and NCAR CCSM3; refer to Delworth et al.

(2015) and Zhang et al. (2016) for a detailed

comparison].

To further evaluate the model performance, we also

compare historical precipitation changes [(2000–15)

minus (1950–99)] in observations with those simulated

by the individual members of theALLFORC ensembles

(including components resulting from both external

forcing and internal variability). The simulated pre-

cipitation changes are computed for each ALLFORC

FIG. 1. Precipitation (mmday21) climatology during 1950–99 in (a) CRU version 3.24.01, (b) GPCC version 7,

(c) GFDL FLOR, and (d) NCAR CESM1. Model climatology is estimated as the average of the 35-member

ALLFORC ensemble.

1We have also evaluated the two models in terms of monthly

mean precipitation variability (i.e., standard deviation) and found

patterns of variability (Figs. S1 and S2 in the supplemental mate-

rial) very similar to those of climatology (Fig. 1). The pattern

similarity between climatology and variability is expected for

monthly precipitation because it has a right-skewed probability

distribution function bounded by zero (i.e., precipitation cannot be

negative).
2 The CRU data are available online at https://doi.org/10.5285/

D0E1585D-3417-485F-87AE-4FCECF10A992, and the GPCC

data are provided by the NOAA/OAR/ESRL Physical Sciences

Division (Boulder, Colorado; http://www.esrl.noaa.gov/psd/).

2582 JOURNAL OF CL IMATE VOLUME 31

https://doi.org/10.5285/D0E1585D-3417-485F-87AE-4FCECF10A992
https://doi.org/10.5285/D0E1585D-3417-485F-87AE-4FCECF10A992
http://www.esrl.noaa.gov/psd/


ensemble member; the range of the 35-member changes

is then compared with observations. Models are con-

sidered to be consistent with observations when the

observed historical precipitation changes are within the

range of modeled changes. Figure 2 shows that models

are consistent with observations (indicated by yellow

color) over most of North America (similar results with

GPCC data, not shown). The inconsistency over a few

scattered regions (blue and red color) is not systematic

across seasons (i.e., does not appear in both seasons in

the same model) and can arise from a number of rea-

sons: 1) poor model performance, 2) not large enough

ensemble size, and 3) observational errors. Overall, both

models simulate historical changes in precipitation that

are consistent with observations over most of North

America. This consistency further increases our confi-

dence in the utility of the models in investigating the

detectability of anthropogenic changes in hydroclimate

mean state in future projections.

3. Methods

Using the three large ensembles, we are able to assess

the near-term projections of decadal shifts in PmEmean

state over North America caused by external (anthro-

pogenic and natural) forcing. Within each ensemble,

PmE mean state is defined for each decade between

2000 and 2050 as the ensemble average (for the 35-

member ALLFORC, this translates to 350 simulated

years that are used to calculate the decadal mean; for the

30-member NATURAL ensemble, it is 300 simulated

years). These consecutive decadal mean states, de-

scribing the decadal evolution of PmE during 2000–50,

are then compared with the past 50-yr climatology av-

eraged over 1950–99 (1750 and 1500 model years for the

35-member ALLFORC and 30-member NATURAL

ensembles, respectively) to highlight the shifts in PmE

mean state.

To test if the shifts are caused by external forcing or

random low-frequency internal climate variability, we

make use of the preindustrial control simulations with a

Monte Carlo approach. For each control simulation, we

do the following: at each grid point, we first randomly

select a 10-yr period (to mimic any decade in the period

2000–50) and a second, nonoverlapping 50-yr period (to

mimic 1950–99) and then compute the difference be-

tween the time mean of the 10-yr period and the time

mean of the 50-yr period—this difference results only

FIG. 2. Model performance in historical changes of land precipitation between 2000–15 and 1950–99 against the

CRU observations. (a),(b) FLOR and (c),(d) CESM1 for (top) NDJFMA and (bottom) MJJASO, respectively.

Yellow color denotes that models are consistent with observations, which is defined when observed changes are

within the distribution of those simulated by the ALLFORC ensemble. Blue (red) color indicates that observed

changes are smaller (larger) than all simulated changes from the 35 ALLFORC members.
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from internal climate variability. We repeat thisN times

(the value of N is described below) to form the grand

ensemble of these differences and compute the ensem-

ble average. We then repeat the above process 5000

times to create a distribution of such ensemble mean

differences that could occur simply by chance from in-

ternal climate variability.We useN5 30when evaluating

the projected changes in the 30-member NATURAL

ensemble and N 5 35 when evaluating the projected

changes in the 35-member ALLFOR ensembles. The

range of the distribution is used to assess the detectability

of shifts in PmE mean state in future projections: shifts

‘‘outside the range’’ are attributable to external forcing

and defined as detectable.

The Monte Carlo method is carried out at each grid

point and can be applied to any regions. A caveat of this

Monte Carlo method is that it is based on the assumption

that internal climate variability remains stationary from

preindustrial control simulations to future projections.

We have compared PmE low-frequency internal vari-

ability between the control simulations and the large en-

sembles and found that changes in PmE internal

variability in the future are relatively small, and our re-

sults are not sensitive to account for these changes (see

appendix A). Future shifts in PmEmean state over North

America are assessed for cold [November–April

(NDJFMA)] and warm [May–October (MJJASO)]

seasons separately.

4. Results

a. Decadal evolution of PmE mean state during
2000–50

Despite the differences between FLOR and CESM1

(e.g., model resolution and configuration), the projected

PmE mean state (ensemble average) over North

America exhibits similar systematic changes during

2000–50 (relative to the 1950–99 reference period) in the

two ALLFORC ensembles (Figs. 3 and 4). The pro-

jected PmE mean state, in general, shifts toward wetter

conditions over high latitudes and drier conditions over

subtropical to middle latitudes, which is consistent with

previous findings based on the CMIP5 multimodel en-

semble (e.g., Seager et al. 2014; Maloney et al. 2014) and

has been largely explained by the ‘‘wet get wetter, dry

get drier’’ mechanism (Held and Soden 2006). These

projected PmE changes, however, are not all distin-

guishable from low-frequency internal climate variabil-

ity in each decade and, thus, cannot be unambiguously

attributed to external forcing.

In boreal winter (NDJFMA; Fig. 3), moistening

trends in PmEmean state are projected overmost North

American land regions, except southwestern North

America, with a drying trend in both models; over the

ocean, there is a general subpolar moistening north of

about 408N and subtropical drying to the south. During

the decade of 2000–09 in both models, a small portion of

the subtropics—mostly ocean—shows drying changes

that are beyond the range of internal climate variability

and remain detectable thereafter. As expected, the area

of detectable changes in PmE mean state increases ac-

cordingly with external forcing, including the anthro-

pogenic component, and mainly over high latitudes and

subtropics; in contrast, the FLOR NATURAL ensem-

ble projects PmE changes that are mostly inside the

range of internal climate variability, suggesting a crucial

role for anthropogenic forcing in projected future

changes in PmE mean state during winter. Over land, a

notable region is northeastern North America near the

Great Lakes (408–558N, 608–858W; blue box in Fig. 3),

where both models project early (around the 2010s)

detectable moistening of comparable magnitudes; an-

other notable region is southwestern North America

(208–408N, 1008–1208W; blue box in Fig. 3), where the

drying trend appears detectable in FLOR starting

around the 2000s but much later in CESM1 (around the

2050s, despite its stronger RCP8.5 forcing; shown later

in Fig. 10).

The bottom row of Fig. 3 shows the timing of detect-

able PmE changes—defined as the decade when the

ensemble mean PmE changes first become detectable

(against internal variability from control simulations)

and remain so thereafter (relative to the 1950–99 ref-

erence period). Note that for FLOR, the PmE changes

that first become detectable during the 2040s are not

necessarily detectable because no information thereaf-

ter is available, but this case only accounts for a small

fraction of North America (2%–8%) (Fig. 5 and Table

A1). In both models, early detectability of PmE changes

caused by anthropogenic forcing is projected over high

latitudes and subtropics around the 2000s and 2010s,

while the PmE changes in middle latitudes around 408N
remain indistinguishable from internal climate vari-

ability throughout 2000–50. In general, FLOR projects

earlier detectability of anthropogenic signal than

CESM1, which will be discussed in the next section.

In boreal summer (MJJASO; Fig. 4), the spatial pat-

tern of northern moistening and southern drying is

similar to that in winter but shifts northward, with the

subtropical drying expanding into middle latitudes

during 2000–50. In both models, a weak drying trend is

projected over most of central North America, and a

moistening trend is projected over northwestern North

America (Alaska and nearby area); however, the

northwestern moistening appears detectable only in

2584 JOURNAL OF CL IMATE VOLUME 31



CESM1, while the drying over central North America is

detectable starting around the 2000s in bothmodels. Note

that the FLOR NATURAL ensemble projects a weak

drying over central North America that has a similar

spatial pattern to theALLFORC ensemble; this similarity

can be explained by the fact that the NATURAL en-

semble includes volcanic cooling only before 2005, and,

thus, future changes relative to 1950–99 are qualitatively

equivalent to those in a future warming scenario. Fur-

thermore, projected drying changes in NATURAL ap-

pear detectable over eastern- and western-central North

America, where detectable PmE changes are projected in

ALLFORC. The early detectability in both ALLFORC

and NATURAL over these regions is due to the weak

internal PmEvariability duringMJJASO(Fig. 6; seemore

discussion in the next section). The projected detectable

drying over eastern- and western-central North America

can be attributed to natural forcing in NATURAL but

cannot be attributed exclusively to anthropogenic forcing

in ALLFORC because the same natural forcing is also

included. Note that this does not mean anthropogenic

forcing is not important; in fact, subtracting NATURAL

from ALLFORC—an estimate of the contribution from

anthropogenic forcing—only slightly weakens the de-

tectability projected in ALLFORC (not shown), which

corroborates the role for anthropogenic forcing.

The timing of detectable PmE changes duringMJJASO

is shown in the bottom row of Fig. 4. Early detectability of

projected PmE changes is simulated in central North

America in both models, although the specific regions are

FIG. 3. Decadal evolution of changes in wintertime (NDJFMA) PmE mean state (shading) relative to the 1950–99 climate during the

(top) 2000s, (middle top) 2020s, and (middle bottom) 2040s (decades as denoted to the left of the figure; note that the 2010s and 2030s are

not shown to allow more space and enhanced clarity for the periods shown) in (a) CESM1 ALLFORC RCP8.5, (b) FLOR ALLFORC

RCP4.5, and (c) FLORNATURAL. Contours with interval60.2mmday21 are labeled in black, with dashed contours denoting negative

PmE changes. Gray crosses in all three columns denote that changes in PmE mean state are not detectable against internal climate

variability estimated from fully coupled control simulations (see section 3 for details on the detectability analysis); red diamonds in

(a) denote undetectable against internal climate variability estimated from the atmosphere–land-only control simulation of CESM1.

(bottom) Timing of detectable changes in PmEmean state, defined as the first decade when PmE changes become detectable and remain

detectable thereafter. Gray crosses in the bottom row mean no detectability by 2050 and are the same as those crosses for the 2040s (i.e.,

the row above). [Blue boxes in the row for the 2040s in (a),(b) indicate the land regions used for the average in Figs. 7 and 8.]

1 APRIL 2018 ZHANG AND DELWORTH 2585



slightly different, with the earliest detectability inwestern-

central North America (358–508N, 1008–1208W) in FLOR

and inmid-central NorthAmerica (408–608N, 808–1108W)

in CESM1. In addition, early detectability is also pro-

jected over high latitudes in both models. Similar to the

wintertime projections, the timing of detectable PmE

changes during MJJASO is earlier in FLOR than in

CESM1 over most of North America.

To quantify the decadal evolution of detectable

changes in PmE mean state over North America, we

show the fraction of the area with detectable PmE

changes as a function of time in Fig. 5 (cyan, blue, and

red bars). As expected, the fraction of the area with

detectable PmE changes in both models increases with

time; the rate of increase is much larger in ALLFORC

than in NATURAL for FLOR, suggesting a crucial role

of anthropogenic forcing in the shifts of PmE mean

state. The increase in the fraction of the total area over

North America has comparable contributions from land

and ocean in both seasons. During winter, the fraction of

the total area with detectable PmE changes increases

from about 33% (19%) in the 2000s to about 70% (72%)

in the 2040s in FLOR (CESM1), while during summer, it

increases from 27% (21%) in the 2000s to about 54%

(64%) in the 2040s in FLOR (CESM1). The rate of in-

crease is, therefore, larger in CESM1, consistent with its

stronger RCP8.5 emission scenario. The detectable

changes in PmE mean state can largely be attributed

to anthropogenic forcing, particularly during winter.

During summer, the FLOR NATURAL ensemble

projects a fairly large fraction of land area with detect-

able PmE changes, about 20%by the 2040s, that can also

be attributed to natural forcing (volcanic cooling before

2005 and no volcanic forcing thereafter); over these

regions, a clean attribution between natural and anthro-

pogenic forcing requires another large ensemble similar

to NATURAL but driven only by anthropogenic forcing,

which, however, is not available. Nonetheless, the large

differences betweenALLFORC andNATURAL during

both seasons highlight the crucial role of anthropogenic

forcing in the detectable shifts of PmE mean state over

North America.

b. Mechanisms

Why do projected changes in PmE mean state

have different timing of detectability against internal

FIG. 4. As in Fig. 3, but for MJJASO. [Blue boxes in the row for the 2040s in (a),(b) indicate the region used for the average in Fig. 9.]
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climate variability over different regions of North

America? To answer this question, we present in Fig. 6

the range of low-frequency internal climate variability

from fully coupled control simulations used in the de-

tectability analysis. Low-frequency internal variability

exhibits a similar spatial pattern between the two

models (during the same season). It is relatively weak

over high latitudes and the western half of North

America (about 1208–1008W) and relatively strong

over the northwestern Pacific coast and eastern North

America along the coast, a pattern that is consistent

with the mean PmE structure (not shown; as expected,

considering the fact that precipitation cannot be

negative, and evaporation is also largely one direc-

tion from Earth’s surface to atmosphere) (e.g., He

et al. 2017).

The different timing of detectable shifts in PmE

mean state can be explained by comparing projected

PmE changes to the range of low-frequency internal

climate variability (i.e., signal-to-noise ratio). Over

high latitudes, where projected PmE changes are

weak (below 0.1mmday21 moistening), the early de-

tectability of shifts in PmE mean state arises from the

weak, low-frequency internal climate variability (so

that even small changes can easily go beyond the

range of internal climate variability); over the sub-

tropics (mostly ocean), where low-frequency internal

climate variability is relatively strong, the early de-

tectability of shifts in PmE mean state is due to the

large magnitude of projected PmE changes (above

0.2mmday21 drying). In winter, northeastern North

America (northeast of the Great Lakes) has early

detectability of moistening in PmE mean state in both

models, mainly because of the strong projected PmE

changes; southwestern North America (208–408N,

1008–1208W) exhibits earlier detectability of drying in

PmE mean state in FLOR than in CESM1 because

FLOR simulates slightly weaker internal variability

but projects stronger drying, compared to CESM1. In

summer, the early detectability of drying over central

FIG. 5. Fraction of area with detectable changes in PmE mean state in (a)–(c) winter and (d)–(f) summer over

North America (108–808N, 408–1708W) for (top) total area, (middle) land, and (bottom) ocean. Cyan, blue, and red

bars show fraction of area with detectable changes against fully coupled internal climate variability in FLOR

NATURAL,ALLFORC, andCESM1ALLFORC, respectively, while yellowbars denote that inCESM1ALLFORC

against atmosphere–land internal climate variability.
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North America in both models is attributed to the

weak, low-frequency internal climate variability be-

cause the projected drying is weak (in all three

ensembles).

In CESM1, PmE low-frequency internal climate var-

iability is also examined in the atmosphere–land-only

control simulation and is found to be similar to that in

the fully coupled simulation (not shown). As a result, the

decadal evolution of detectable PmE changes is nearly

the same between using internal climate variability in

fully coupled and atmosphere–land-only control simu-

lations in both seasons (Figs. 3a and 4a, gray vs red

hatching; Fig. 5, red and yellow bars). This similarity

suggests that the PmE low-frequency internal climate

variability over North America is dominated by

atmosphere–land intrinsic dynamics, consistent with the

findings on precipitation by Deser et al. (2014).

Differences in the timing of detectability between the

two models are not so surprising, considering their dif-

ferent amplitudes of internal climate variability and

projected PmE changes (arising presumably from dif-

ferent model configuration, such as resolution, forcing,

and model physics), but what is interesting here is their

similarities over a few key regions, including north-

eastern (408–558N, 608–858W), southwestern (208–408N,

1008–1208W), and central (388–558N, 908–1208W) North

America. We next show that the physical processes un-

derlying the shifts in PmE mean state in these regions

are also similar between the two models.

To isolate contributions of various processes to

the PmE changes, we perform moisture budget analysis

(e.g., Seager and Henderson 2013). The atmosphere

moisture equation can be expressed in vertically in-

tegrated form on the pressure coordinate as

P2E52
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where, on the left-hand side,P andE are precipitation and

evaporation, respectively, and on the right-hand side,

rw, g, ps, q, and u are water density, gravitational acceler-

ation, surface pressure, atmospheric specific humidity, and

winds, respectively. The equation states that the net water

flux at the surface (i.e., PmE) is balanced by the tendency

in total (vertically integrated) atmospheric moisture con-

tent (first term on the right-hand side) and the divergence

of total atmospheric moisture flux (second term on the

right-hand side). To diagnose specific processes, such as

moisture advection and atmospheric flow divergence, the

divergence term needs to be decomposed into
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where the first term on the right-hand side—vertical

integral of moisture flux divergence—can be further

decomposed into

FIG. 6. Range of internal PmE variability (mmday21) in fully coupled control simulations used in the de-

tectability analysis in Figs. 3 and 4 in (a),(b) FLOR and (c),(d) CESM1 during (top) NDJFMA and (bottom)

MJJASO. The range is estimated as the difference between the maximum andminimum values of the 5000 samples

constructed with the Monte Carlo approach (see text for more details).
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a term related to flow divergence and a term related to

moisture advection. The second term on the right-hand

side represents the contribution from vertical moisture

flux at the surface (indicated by the subscript s) owing to

the flow along the sloping topography and in models is

computed as a residual of Eq. (2) (i.e., the difference

between the divergence of total moisture flux and the

vertical integral of moisture flux divergence).

Here, in the three large ensembles, ps, q, and u are

saved at the monthly mean resolution for the entire

simulation period. Using monthly mean fields, the

moisture budget will have a residual—the imbalance

between the left- and right-hand sides of the moisture

Eq. (1)—that includes numerical errors (from dis-

cretization) and unresolved submonthly processes (i.e.,

transient eddies). To quantify contributions from sub-

monthly transient eddies in the moisture budget analy-

sis, high-frequency (at least 6 hourly) model output are

required (Seager and Henderson 2013). However, we

find that variations of the monthly mean residual are

dominated by submonthly transient eddies (see appen-

dix B for analyses supporting this assertion). Therefore,

trends (of interest here) in the monthly mean residual

can be interpreted as the contribution from unresolved,

submonthly transient eddies.

Over northeastern North America (408–558N, 608–
858W) in both models, the wintertime moistening trend

in PmE (black curve in Fig. 7) results from a larger rate

of increase in precipitation (thin dark green curve) than

in evaporation (thin brown curve). Among various

processes in the moisture budget, only the residual term

(red curve) shows a similar trend to PmE, suggesting

that the wintertime moistening in this region is caused

by submonthly transient eddies. The role of wintertime

submonthly transient eddies in moistening the northeast

is likely attributable to the poleward shift and en-

hancement of storm tracks (e.g., Yin 2005; Bengtsson

et al. 2006; Wu et al. 2011) and/or the strengthened

meridional gradient of atmospheric moisture content

(Seager et al. 2014)—both as a result of greenhouse gas–

induced global warming. The poleward shift and en-

hancement of storm tracks can lead to moistening via

stronger transient eddy activity over northeastern North

America, while the strengthened meridional atmo-

spheric moisture gradient does not require changes in

transient eddy activity for the northeastern moistening

and is shown to be the dominant process in the CMIP5

ensemble (Seager et al. 2014).

Over southwestern North America (208–408N, 1008–
1208W) during winter, FLOR and CESM1 simulate

contrasting wet and dry PmE mean states, respectively

(owing to the different relative amplitudes of pre-

cipitation and evaporationmean state; Fig. 8). However,

FIG. 7. The 35-member ensemblemeanmoisture budget in (a) FLORand (b) CESM1during winter (NDJFMA),

averaged over northeastern North America (408–558N, 608–858W, land only; refer to the blue box in Figs. 3a,b for

the 2040s). Moisture budget analysis is based on monthly mean fields, and moisture budget terms are indicated in

the legend. Note that variations of the residual term (red curve) can be largely interpreted as contributions from

unresolved submonthly transient eddies (see appendix B); here, the 35-member ensemble mean removes part of

internal climate variability and should be interpreted as the diagnostics of hydroclimate mean state. FLOR covers

1950–2050 and CESM1 1950–2100.
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both models project a positive trend in evaporation, a

relatively weak negative trend in precipitation, and,

thus, the drying trend in PmE. In contrast to north-

eastern North America, submonthly transient eddies

(indicated by the residual term; red curve) in both

models show no detectable trend; instead, the drying

PmE trend is attributed to an increase in the divergence

of total moisture flux by monthly mean atmospheric

circulation (thick light green curve). The increase in the

divergence of total moisture flux has a positive contri-

bution from the vertical integral of moisture flux di-

vergence (blue curve) that is partly offset by the surface

term (cyan curve) in both models; however, the increase

in the vertical integral of moisture flux divergence is

explained in FLOR only by the moisture advection term

(magenta curve) and in CESM1 by both the moisture

advection and atmospheric flow divergence (thin light

blue curve) terms. Despite these differences, FLOR and

CESM1 both simulate a dominant role of moisture flux

divergence by monthly mean circulation (as opposed to

submonthly transient eddies) in the projected winter-

time drying trend in PmE mean state over southwestern

North America, a result that is consistent with previous

findings on the moisture budget in this region (e.g.,

Seager et al. 2007, 2014).

The moisture budget is also examined over central

North America (388–558N, 908–1208W), where both

models project detectable PmE drying during summer

(Fig. 9). The drying trend arises primarily from the en-

hanced evaporation and is largely consistent with the

negative trend of monthly residual term dominated by

submonthly transient eddies in both models (Fig. B2),

suggesting an important role of submonthly transient

eddies in the projected summertime drying there. FLOR

and CESM1 disagree in the trends of monthly mean

moisture processes. FLOR projects a weak negative

trend (or no trend) in the divergence of total moisture

flux (thick green curve), while CESM1 projects a posi-

tive trend that partly offsets the contribution from sub-

monthly transient eddies; the breakdown terms from the

divergence of total moisture flux, in general, show op-

posite trends between FLOR and CESM1 (e.g., blue

curves). Despite these differences in monthly mean

processes, the suggested role of submonthly transient

eddies in projected summertime drying here aligns with

the conclusion by Seager et al. (2014), who used CMIP5

6-hourly output to explicitly show a similar role of sub-

monthly transient eddies in this region.

c. Decadal evolution of PmEmean state during 2050–
2100 in CESM1

In the CESM1 large ensemble, we extend the above

analysis and assess the decadal evolution of PmE mean

state during 2050–2100. As shown in Fig. 10, the spatial

pattern of PmE changes in both seasons remains largely

the same as that during the 2040s, but the magnitude

keeps growing in response to the RCP8.5 radiative

forcing. As a result, the area of detectable PmE changes

in winter (summer) increases from about 72% (64%) of

North America during the 2040s to about 87% (81%)

during the 2090s (Fig. 5). Regions of undetectable PmE

changes are mainly confined to the transition zone be-

tween moistening and drying (where the changes are

nearly zero). Note that these results on the detectability

FIG. 8. As in Fig. 7, but for southwestern North America (208–408N, 1008–1208W, land only; refer to the blue box in

Figs. 3a,b for the 2040s) during NDJFMA.
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remain largely the same when the atmosphere–land-

only control simulation is used (Figs. 10 and 5).

The timing of detectable PmE changes for the entire

twenty-first century is shown in the bottom row of

Fig. 10. The spatial pattern of the timing is largely sim-

ilar to that for the 2000–50 period (Figs. 3 and 4, bottom

row) because more than 60% of North America already

exhibit detectable PmE changes before 2050, while only

about 15% of North America first become detectable

during 2050–2100 (Fig. 5). Note that the smaller rate of

increase in area with detectable signal during 2050–2100

does not imply that impacts from anthropogenic forcing

get weaker; instead, the magnitude of projected PmE

changes—with a spatial pattern stabilized by 2050—

keeps increasing, along with the growing anthropogenic

radiative forcing (Fig. 10), suggesting enhanced impacts

of anthropogenic forcing during the second half of the

twenty-first century.

5. Summary and discussion

In this work, we have assessed the detectability of

decadal changes in hydroclimate mean state caused by

anthropogenic forcing in future projections over North

America. We use three large ensembles with projected

radiative forcing changes—two with the GFDL FLOR

model and one with the NCAR CESM1—along with

three multimillennia preindustrial control simulations

(one with FLOR and two with CESM1). This large

volume of simulations (a total of about 20 000 model

years) and the high spatial resolution (;50km) of FLOR

atmosphere–land components enable a robust assess-

ment of anthropogenic changes in hydroclimate mean

state on the regional scale and decadal time scales. Here,

we have focused on the detectability of anthropogenic

shifts in precipitation-minus-evaporation mean state

over North America during 2000–50 relative to the

1950–99 climate for cold (NDJFMA)andwarm(MJJASO)

seasons, respectively. Both FLOR and CESM1 simu-

late reasonable precipitation climatology during 1950–

99, compared to observations over North America. In

addition, they also simulate historical precipitation

changes consistent with observations over most of

North American land.

Despite many model differences (e.g., resolution and

external forcing), the FLOR and CESM1 ALLFORC

ensembles project similar robust features in the decadal

evolution of PmE mean state over North America dur-

ing 2000–50. Relative to the 1950–99 climate, PmEmean

state is projected to get wetter (i.e., more positive) in

high latitudes and drier in subtropics, a pattern of

changes that is consistent with previous studies (e.g.,

Hoerling et al. 2011; Seager et al. 2014; Maloney et al.

2014) and has been explained by the ‘‘wet get wetter, dry

get drier’’ mechanism (Held and Soden 2006) in re-

sponse to anthropogenic global warming. These pro-

jected changes in PmE mean state, however, are not all

detectable against internal climate variability estimated

from preindustrial control simulations and, thus, not all

attributable to anthropogenic forcing. During the 2000s,

detectable changes in PmE mean state only appear in a

few regions of the high latitudes and subtropical ocean

FIG. 9. As in Fig. 7, but for central NorthAmerica (388–558N, 908–1208W; refer to the blue box in Figs. 4a,b for the

2040s) during MJJASO. Note that precipitation and evaporation curves have been shifted downward by

1mmday21 in both models in order to make the plot smaller.
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in NDJFMA and in central North America in MJJASO;

as radiative forcing increases, the changes expand to a

larger area (expected) and cover about 50%–70% of

North America by the 2040s. The time of emergence of

detectable changes in PmE mean state against internal

climate variability depends on the signal-to-noise ratio.

Over high latitudes and summertime central North

America, the early emergence of detectable changes in

PmE mean state is due to the weak internal climate

variability in PmE, while in the subtropics, it is mainly

due to the large projected PmE changes. In regions

without detectable changes in PmE mean state, the lack

of detectability by the 2040s is because of a combination

of relatively strong internal climate variability and rel-

atively weak projected PmE changes.

The FLOR NATURAL ensemble can help further

attribute detectable changes in PmE mean state into an-

thropogenic and natural forcing. In NDJFMA, projected

PmE changes in NATURAL remain indistinguishable

from internal climate variability throughout 2000–50 over

most of North America, which suggests that detectable

changes in PmE mean state projected in ALLFORC are

attributable to anthropogenic forcing. In MJJASO, de-

tectable drying in PmE mean state is projected in both

NATURAL and ALLFORC over parts of central North

America, owing to theweakPmE internal variability.While

the detectable PmE changes projected in NATURAL in

these regions can be attributed to natural forcing (volcanic

cooling before 2005 but no volcanic forcing whatsoever

thereafter), those inALLFORC (in the same regions) are

not exclusively attributable to anthropogenic forcing be-

cause the same natural forcing is included (note that this

does not mean that anthropogenic forcing is not impor-

tant, but only means that an exclusive attribution cannot

be achieved with the two ensembles here; a clean exclu-

sive attribution requires an additional large ensemble

driven only by anthropogenic forcing). The weak PmE

internal climate variability over central North America

implies that the hydroclimate mean state is vulnerable to

external forcing during MJJASO.

Over North American land, there are a few notable

regions where projected changes in PmEmean state are

similar in both models, including northeastern and

southwestern North America in NDJFMA and central

FIG. 10. As in Fig. 3a and 4a, but for projections during 2050–2100 in the CESM1 ensemble in (a) NDJFMA and

(b) MJJASO, respectively. Note that the 2060s and 2080s are not shown for clarity.
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North America in MJJASO.Moisture budget analysis is

performed to diagnose the physical processes underly-

ing the projected changes in PmE mean state over these

regions. Over northeastern North America, projected

wintertime moistening changes appear detectable

around the 2010s and are attributed to submonthly

transient eddies. Submonthly transient eddies can result

in the northeastern moistening via the enhanced me-

ridional atmospheric moisture gradient (Seager et al.

2014) in response to global warming and likely also

through enhanced eddy activity in this region as a result

of the poleward shift and strengthening of the Atlantic

storm track (e.g., Yin 2005; Bengtsson et al. 2006; Wu

et al. 2011). Over southwestern North America, pro-

jected wintertime drying changes appear detectable

around the 2000s in FLOR but much later in CESM1,

around the 2050s, owing to the larger signal-to-noise

ratio in FLOR than in CESM1. Nonetheless, both

models simulate a dominant role for monthly mean at-

mosphere circulation in the projected wintertime drying

trend. One possible process from the mean atmospheric

circulation is the poleward expansion of tropical Hadley

cells in response to greenhouse gas–induced global

warming (e.g., Yin 2005; Bengtsson et al. 2006; Lu et al.

2007; Zhang et al. 2016). The descending branch of the

Hadley cell expands poleward over southwestern North

America, leading to the drying trend (Seager et al. 2007).

Another possible process for the southwestern drying is

the northerly dry advection associated with changes in

stationary waves (Seager et al. 2014; Simpson et al.

2016). Over central North America, the summertime

drying trends appear detectable around the 2000s in

both models and are largely explained by a similar

drying trend in the diagnosed monthly residual term,

which suggests a crucial role of submonthly transient

eddies. Although the monthly mean processes di-

agnosed here mostly show opposite trends between the

two models, previous moisture budget analysis based on

the 6-hourly CMIP5 model output (Seager et al. 2014)

explicitly shows an important role of submonthly tran-

sient eddies in the summertime drying trend in this re-

gion, corroborating our inference.

Internal climate variability used in the detectability

analysis of projected PmE changes is estimated from

preindustrial control simulations. Neglecting possible

changes in internal climate variability from control to

future simulations is estimated to only lead to small errors

(,5%; see appendix A) in our results and, therefore, is

not considered here. In CESM1, PmE internal climate

variability from the atmosphere–land-only control simu-

lation is also used in the detectability analysis. Similar

results are found, suggesting that atmosphere–land

intrinsic dynamics play a dominant role in the PmE

internal climate variability in CESM1. This conclusion

FIG. A1. Ratio of standard deviation of PmE decadal variability during 2000–49 to that in preindustrial control

simulation for (a),(c) NDJFMA and (b),(d) MJJASO and for (left) FLOR and (right) CESM1. In control simu-

lations, the standard deviation of PmE decadal variability is computed at each grid point after low-pass filtering

PmE time series with a cutoff period of 10 yr; in large ensembles, it is computed at each grid point after 1) sub-

tracting the ensemble mean (forced signal) from each ensemble member, 2) low-pass filtering the remaining PmE

time series with a 10-year cutoff period, and 3) concatenating the 2000–50 period of all ensemble members (to form

a series of 1750 model years).
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is consistent with previous findings that uncertainties

caused by internal climate variability in future pro-

jections are largely attributed to variations of large-

scale atmospheric circulation (Deser et al. 2014).

The detectability analysis in CESM1 is further ex-

tended to 2050–2100. A main finding is that the spatial

pattern of projected changes in PmEmean state remains

similar to that by 2050, but the magnitude of the pro-

jected PmE changes keeps growing along with the en-

hanced anthropogenic radiative forcing. This result

suggests that the spatial pattern of projected changes in

PmE mean state will be largely stabilized before the

middle of the current century, with most of North

America (.70% in CESM1) projected to experience

detectable changes in PmE mean state by 2050.

This work quantitatively illustrates that anthro-

pogenically forced changes in hydroclimate mean state

over North America are detectable even on decadal

time scales, on which internal climate variability domi-

nates hydroclimate changes. Detectable anthropogenic

changes in the hydroclimate mean state are projected

over most of North America by 2050. These model

results are of importance for climate mitigation and

adaptation.
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APPENDIX A

Comparison of PmE Low-Frequency Internal
Variability between Preindustrial Control

Simulation and Future Projections

We compare low-frequency internal variability of

PmE in preindustrial control simulations with that in

future 2000–50 projections and assess the impacts of

assuming stationary PmE internal variability in the de-

tectability analysis on our results. In preindustrial con-

trol simulations, low-frequency internal variability at

each grid point is measured as the standard deviation of

low-pass-filtered PmE time series with a 10-yr cutoff

period. In the 35-member ALLFORC ensembles, it is

measured as the standard deviation of a 1750-yr PmE

TABLEA1. Fraction (%) of the area where ensemble-mean PmE changes relative to the 1950–99 climate can be attributed to externally

forced signal against internal climate variability in fully coupled control simulations during (top) NDJFMA and (bottom) MJJASO,

respectively. Numbers inside parentheses indicate the adjusted fraction after rescaling based on ratios shown in Fig. A1.

GFDL FLOR 35-member RCP4.5 ALLFORC (rescaled) NCAR CESM1 35-member RCP8.5 ALLFORC (rescaled)

Land Ocean Total Land Ocean Total

NDJFMA

2000–09 27.7 (23.8) 35.3 (31.5) 32.9 (29.1) 11.5 (8.3) 23.4 (22.6) 19.1 (17.5)

2010–19 37.5 (33.8) 52.2 (48.6) 47.6 (44.0) 31.6 (27.4) 39.5 (37.1) 36.6 (33.6)

2020–29 46.9 (43.3) 63.5 (60.5) 58.4 (55.1) 50.5 (47.2) 50.3 (48.9) 50.3 (48.4)

2030–39 55.3 (51.5) 71.2 (68.5) 66.3 (63.2) 63.4 (60.9) 63.9 (62.5) 63.7 (62.0)

2040–49 62.7 (59.0) 73.6 (71.6) 70.2 (67.7) 69.8 (67.7) 73.3 (72.1) 72.0 (70.5)

2050–59 — — — 78.4 (75.5) 75.2 (72.2) 76.4 (73.4)

2060–69 — — — 81.6 (79.2) 79.7 (77.8) 80.4 (78.3)

2070–79 — — — 82.8 (80.8) 81.4 (79.5) 81.9 (80.0)

2080–89 — — — 86.5 (84.5) 84.8 (83.0) 85.4 (83.6)

2090–99 — — — 87.5 (86.0) 87.4 (86.1) 87.4 (86.1)

MJJASO

2000–09 26.6 (21.8) 27.9 (22.8) 27.5 (22.5) 17.5 (17.2) 23.1 (21.8) 21.1 (20.1)

2010–19 37.2 (31.8) 30.1 (26.1) 32.3 (27.8) 36.1 (35.0) 37.7 (37.3) 37.1 (36.5)

2020–29 49.1 (43.7) 43.0 (38.4) 44.9 (40.0) 52.7 (52.0) 50.2 (48.9) 51.1 (50.0)

2030–39 55.8 (51.7) 47.4 (43.2) 50.0 (45.8) 61.2 (60.7) 60.1 (59.3) 60.5 (59.8)

2040–49 59.7 (54.9) 51.7 (47.9) 54.2 (50.1) 65.8 (65.1) 63.0 (62.1) 64.0 (63.2)

2050–59 — — — 72.8 (71.0) 64.9 (63.8) 67.8 (66.4)

2060–69 — — — 75.3 (74.3) 71.3 (70.2) 72.7 (71.7)

2070–79 — — — 78.7 (77.9) 73.7 (72.4) 75.5 (74.4)

2080–89 — — — 80.1 (79.5) 77.0 (74.9) 78.1 (76.5)

2090–99 — — — 81.3 (80.7) 81.1 (79.2) 81.2 (79.7)
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series constructed as follows: 1) first subtracting the

ensemble mean of PmE time series (forced component)

from each ensemble member, 2) then low-pass filtering

(10-yr cutoff period) the remaining PmE time series

during 1950–2050 in each member, and 3) finally con-

catenating the 2000–50 period of all 35 members to form

the 1750-yr series. The ratio of the PmE standard de-

viation in ALLFORC ensembles to preindustrial con-

trol simulations is shown in Fig. A1 for FLOR and

CESM1 in winter and summer, respectively.

From preindustrial-level to future RCP4.5 radiative

forcing in FLOR, low-frequency internal variability of

PmE in both seasons increases by less than 20% over

most of North America, except for polar ocean and

summertime subtropical North Pacific and scattered

North American land, where the increase is about 20%–

60% (mostly below 40%). In CESM1, from preindustrial-

level to future RCP8.5 radiative forcing, the increase

in low-frequency PmE internal variability is smaller

and over fewer regions than in FLOR, and there is a

substantial area over subtropical ocean and summertime

land where the PmE internal variability decreases by

less than 20%.

The increase or decrease in low-frequency PmE in-

ternal variability from preindustrial simulations to future

projections implies a possible overestimation or un-

derestimation of the detectability of projected shifts in

PmE mean state based on preindustrial-level internal

variability. To assess this effect, we perform the de-

tectability analysis by using the range of internal vari-

ability rescaled with the ratios shown in Fig. A1

(assuming that the ratios estimated here apply to the in-

ternal variability constructed with the Monte Carlo ap-

proach in the main text) and find small changes to our

results—an overall,5%of overestimation in the fraction

of the area, with detectable PmE changes over North

America (Table A1). The small effect on our results is

because the detectability is based on the signal-to-noise

ratio, rather than just on the noise (internal variability).

Considering this small effect, we only report results based

on the preindustrial-level internal variability.

APPENDIX B

Relationship between Submonthly Transient Eddies
and Monthly Residual in Moisture Budget Analysis

To demonstrate the dominant role of submonthly

transient eddies in the residual of the moisture budget

usingmonthlymean fields, we perform a 20-yr control run

FIG. B1. (a)–(c) Winter (NDJFMA) and (d)–(f) summer (MJJASO) moisture budget (mmday21) climatology from the 20-yr FLOR

control simulation. (left) PmE; (center) budget residual resulted frommonthly fields; and (right) moisture flux divergence by submonthly

transient eddies computed from 6-hourly fields. [Blue dashed boxes in (center) and (right) indicate the regions where time series of

moisture budget terms is computed in Fig. B2.]
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with the GFDL FLOR model and save output at both

6-hourly and monthly mean resolutions. Using the over-

bar to denote the monthly mean, subscript 6 to denote

the 6-hourly mean, and prime to denote the departure of

6-hourly fields from their monthly mean, the transient

eddy term can be expressed as u0
6q

0
6 5 u6q6 2 u q. Mois-

ture budget analysis is carried out with the 6-hourly and

monthly mean output separately.

Fig. B1 shows the 20-yr climatology of the moisture

budget terms over North America during winter and

summer, respectively. The eddy term is large during

winter over regions influenced by the Pacific and At-

lantic storm tracks (i.e., eastern North Pacific and

around the east coast of North America) and during

summer, mainly over northeastern North America and

surrounding oceans; in these regions, the monthly re-

sidual term exhibits very similar features, suggesting

the dominant role of submonthly transient eddies in

the monthly residual term. This relationship is further

supported by the time series of the moisture budget

averaged over the three regions that have early de-

tectability of projected PmE changes (recall Figs. 3

and 4). In all three regions (Fig. B2), the interannual

variations of the monthly residual term (magenta

curve) follow closely the eddy term (dashed green

curve). This result suggests that trends appearing in the

monthly residual can be attributed to changes in sub-

monthly transient eddies.
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